Spec and Proj - Exercises

Ed Segal

- 1. A variety V is called *irreducible* if it can't be decomposed as $V = V_1 \cup V_2$ in a non-trivial way. Show that this is equivalent to (a) any two Zariski open subsets in V intersect, or (b) the ring $\mathbb{C}[V]$ is an integral domain.
- 2. (a) Show that Nullstellensatz fails over \mathbb{R} by finding a polynomial f such that $I_{V(f)}$ is bigger than rad(f). Generalize to any non-algebraically-closed field.
 - (b) Over \mathbb{C} or \mathbb{R} the ideal $I_{\mathbb{A}^n}$ is zero. What happens over \mathbb{F}_p ?
- 3. Show that for any hypersurface $V(f) \subset \mathbb{A}^n$, the complement $\mathbb{A}^n \setminus V(f)$ is isomorphic to an affine variety.
- 4. Prove that every homomorphism $\mathbb{C}[W] \to \mathbb{C}[V]$ is induced from a regular map $V \to W$.
- 5. Let R be the ring $R = \mathbb{C}[x]/(x^2)$. Show that a homomorphism $\mathbb{C}[V] \to R$ is exactly the data of a point $p \in V$ and a vector which is tangent to V at p.
- 6. Let $V = V(y^2 x^3) \subset \mathbb{A}^2$ and let $f : \mathbb{A}^1 \to V$ be the function:

 $f: t \mapsto (t^2, t^3)$

Show that f is not an isomorphism but it is a bijection (and even a homeomorphism in the usual complex topology).

- 7. Compute the transition functions (*i.e.* the co-ordinate changes) between the standard affine charts in \mathbb{P}^2 .
- 8. Find an explicit method to compactify any hypersurface in \mathbb{A}^n to a hypersurface in \mathbb{P}^n .
- 9. (a) Let C be the projective curve $V(xy z^2) \subset \mathbb{P}^2$. Construct a bijection $\mathbb{P}^1 \to C$.
 - (b) What does this have to do with traceless 2×2 matrices of rank 1?
 - (c) What happens if $xy z^2$ is replaced with another quadratic form?
- 10. (a) Consider the complex affine curve $V_{\epsilon} = V(xy \epsilon) \subset \mathbb{A}^2$ for $\epsilon \in \mathbb{C}$. Convince yourself that (i) for $\epsilon \neq 0$ the space V_{ϵ} is a cylinder, and (ii) as $\epsilon \to 0$ one circle in the cylinder collapses, leaving two discs glued at a point.
 - (b) What's the topology of the complex projective plane curve $V(xy) \subset \mathbb{P}^2$? Now consider a small peturbation $f = xy + \epsilon g$ for some quadratic g(x, y, z). What's the topology of V(f)? Compare this with Q9.
 - (c) Now take a cubic plane curve of the form $V = V(xyz + \epsilon h(x, y, z))$. Argue that V has the topology of a torus.